Estimation of Circulating Drug Metabolite Exposure in Human Using In Vitro Data and Physiologically Based Pharmacokinetic Modeling: Example of a High Metabolite/Parent Drug Ratio.

نویسندگان

  • R Scott Obach
  • Jian Lin
  • Emi Kimoto
  • Sridhar Duvvuri
  • Timothy Nicholas
  • Eugene P Kadar
  • Larry M Tremaine
  • Aarti Sawant-Basak
چکیده

(R)-4-((4-(((4-((tetrahydrofuran-3-yl)oxy)benzo[d]isoxazol-3-yl)oxy)methyl)piperidin-1-yl)methyl)tetrahydro-2H-pyran-4-ol (TBPT), a serotonin-4 receptor partial agonist, is metabolized to two metabolites: an N-dealkylation product [(R)-3-(piperidin-4-ylmethoxy)-4-((tetrahydrofuran-3-yl)oxy)benzo[d]isoxazole (M1)] and a cyclized oxazolidine structure [7-(((4-(((R)-tetrahydrofuran-3-yl)oxy)benzo[d]isoxazol-3-yl)oxy)methyl)octahydro-3H (M2)]. After administration of TBPT to humans the exposure to M1 was low and the exposure to M2 was high, relative to the parent drug, despite this being the opposite in vitro. In this study, projection of the plasma metabolite/parent (M/P) ratios for M1 and M2 was attempted using in vitro metabolism, binding, and permeability data in static and dynamic physiologically based pharmacokinetic (PBPK) models. In the static model, the fraction of parent clearance yielding the metabolite (which also required taking into account secondary metabolites of M1 and M2), the clearance of the metabolites and parent, and an estimate of the availability of the metabolites from the liver were combined to yield estimated parent/metabolite ratios of 0.32 and 23 for M1 and M2, respectively. PBPK modeling that used in vitro and physicochemical data input yielded estimates of 0.26 and 20, respectively. The actual values were 0.12 for M1/TBPT and 58 for M2/TBPT. Thus, the ratio for M1 was overpredicted, albeit at values less than unity. The ratio for M2/TBPT was underpredicted, and the high ratio of 58 may exceed a limiting ceiling of the approach. Nevertheless, when considered in the context of determining whether a potential circulating metabolite may be quantitatively important prior to administration of a drug for the first time to humans, the approaches succeeded in highlighting the importance of M2 (M/P ratio >> 1) relative to M1, despite M1 being much greater than M2 in vitro.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metabolite Parameters as an Appropriate Alternative Approach for Assessment of Bioequivalence of Two Verapamil Formulations

A bioequivalence study of two verapamil formulations (generic verapamil tablets and Isoptin® tablets) was performed by comparing pharmacokinetic parameters of the parent drug and its major metabolite, norverapamil following a single dose administration of 80 mg verapamil hydrochloride in 22 healthy volunteers according to a randomized, two-period, crossover-design study. Moreover, the feasibili...

متن کامل

Metabolite Parameters as an Appropriate Alternative Approach for Assessment of Bioequivalence of Two Verapamil Formulations

A bioequivalence study of two verapamil formulations (generic verapamil tablets and Isoptin® tablets) was performed by comparing pharmacokinetic parameters of the parent drug and its major metabolite, norverapamil following a single dose administration of 80 mg verapamil hydrochloride in 22 healthy volunteers according to a randomized, two-period, crossover-design study. Moreover, the feasibili...

متن کامل

The Use of In Vitro Data and Physiologically-Based Pharmacokinetic Modeling to Predict Drug Metabolite Exposure: Desipramine Exposure in Cytochrome P4502D6 Extensive and Poor Metabolizers Following Administration of Imipramine.

Major circulating drug metabolites can be as important as the drugs themselves in efficacy and safety, so establishing methods whereby exposure to major metabolites following administration of parent drug can be predicted is important. In this study, imipramine, a tricyclic antidepressant, and its major metabolite desipramine were selected as a model system to develop metabolite prediction meth...

متن کامل

Quantitative Prediction of Drug–Drug Interactions Involving Inhibitory Metabolites in Drug Development: How Can Physiologically Based Pharmacokinetic Modeling Help?

This subteam under the Drug Metabolism Leadership Group (Innovation and Quality Consortium) investigated the quantitative role of circulating inhibitory metabolites in drug-drug interactions using physiologically based pharmacokinetic (PBPK) modeling. Three drugs with major circulating inhibitory metabolites (amiodarone, gemfibrozil, and sertraline) were systematically evaluated in addition to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 46 2  شماره 

صفحات  -

تاریخ انتشار 2018